SimBow at SemEval-2017 Task 3: Soft-Cosine Semantic Similarity between Questions for Community Question Answering
نویسندگان
چکیده
This paper describes the SimBow system submitted at SemEval2017-Task3, for the question-question similarity subtask B. The proposed approach is a supervised combination of different unsupervised textual similarities. These textual similarities rely on the introduction of a relation matrix in the classical cosine similarity between bag-of-words, so as to get a softcosine that takes into account relations between words. According to the type of relation matrix embedded in the soft-cosine, semantic or lexical relations can be considered. Our system ranked first among the official submissions of subtask B.
منابع مشابه
Talla at SemEval-2017 Task 3: Identifying Similar Questions Through Paraphrase Detection
This paper describes our approach to the SemEval-2017 shared task of determining question-question similarity in a community question-answering setting (Task 3B). We extracted both syntactic and semantic similarity features between candidate questions, performed pairwise-preference learning to optimize for ranking order, and then trained a random forest classifier to predict whether the candida...
متن کاملFuRongWang at SemEval-2017 Task 3: Deep Neural Networks for Selecting Relevant Answers in Community Question Answering
We describe deep neural networks frameworks in this paper to address the community question answering (cQA) ranking task (SemEval-2017 task 3). Convolutional neural networks and bi-directional long-short term memory networks are applied in our methods to extract semantic information from questions and answers (comments). In addition, in order to take the full advantage of question-comment seman...
متن کاملECNU at SemEval-2016 Task 3: Exploring Traditional Method and Deep Learning Method for Question Retrieval and Answer Ranking in Community Question Answering
This paper describes the system we submitted to the task 3 (Community Question Answering) in SemEval 2016, which contains three subtasks, i.e., Question-Comment Similarity (subtask A), Question-Question Similarity (subtask B), and Question-External Comment Similarity (subtask C). For subtask A, we employed three different methods to rank question-comment pair, i.e., supervised model using tradi...
متن کاملSLS at SemEval-2016 Task 3: Neural-based Approaches for Ranking in Community Question Answering
Community question answering platforms need to automatically rank answers and questions with respect to a given question. In this paper, we present the approaches for the Answer Selection and Question Retrieval tasks of SemEval-2016 (task 3). We develop a bag-of-vectors approach with various vectorand text-based features, and different neural network approaches including CNNs and LSTMs to captu...
متن کاملQU-BIGIR at SemEval 2017 Task 3: Using Similarity Features for Arabic Community Question Answering Forums
In this paper, we describe our QU-BIGIR system for the Arabic subtask D of the SemEval 2017 Task 3. Our approach builds on our participation in the past version of the same subtask. This year, our system uses different similarity features that encodes lexical and semantic pairwise similarity of text pairs. In addition to wellknown similarity measures such as cosine similarity, we use other meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017